

Mark Scheme (Results)

October 2017

Pearson Edexcel International A Level in Statistics S1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

October 2017 Publications Code WST01_01_1710_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marl	KS
1. (a)	[Range =] <u>63</u>	B1	
(b)	[IOR =] 18	B1	(1)
		21	(1)
(c)	$[Q_2 =](-8) + \frac{20}{33} \times 8 \text{or} (0) - \frac{13}{33} \times 8 [\text{NB} (n+1) \text{ will have } 20.5 \text{ or } 12.5]$	M1	
	= -3.1515 awrt -3.15	A1	(2)
(d)	$[Q_3 =]$ mid-point of $[0, 8]$ group so therefore = 4	B1cso	(1)
(e)(i)	$IQR = 48 = 12$ so upper limit is $4 + 1.5 \times 12 = 22$	M1	(1)
	lower limit is $-8 - 1.5 \times 12 = -26$	A1	
	So the outliers are <u>23 and 28</u>	AI M1	
(ii)		A1	
	-40 -30 -20 -10 O 15 20 30	A1	
(f)	Interguartile range is smaller (12 compared to 18) or range is smaller (53 y 63)	B1	(6)
	Median is closer to zero $(-3.15 \text{ is closer than 5})$	B1	
	So they <u>have</u> improved	dB1	(3)
		[Total	14]
	Notes		
(c)	M1 for a correct fraction and $\times 8$ (ignore end point) A1 for awrt = 3.15 (allow use of $n + 1$ leading to = 3.03)		
	Accept $-\frac{104}{22}$ if box plot is OK or 3sf value is quoted in (f)		
(d)	B1cso for a clear argument with no incorrect working seen. Allow 4.14 from 7.25 for $(n + 1)$ case		
$(\mathbf{a})(\mathbf{i})$	M1 for at least one correct calculation e.g. $(4+1)5(8-4)$ (implied by one corr	ect limi	t)
(e)(1)	1^{st} A1 for one correct limit		()
	2^{nd} A1 for <u>both</u> correct limits and the two correct outliers identified		
(ii)	M1 for a box with 2 whiskers (one at each end)		
	1^{st} A1 for – 8 and 4 and ft Q_2 between them <u>and</u> lower whisker ending at – 25 n 2 nd A1 for upper whisker ending at 18 or 22 <u>and</u> 2 outliers marked at 23 and 28	o outlier	'S
(e)(ii)SC	Two incorrect outliers in (e)(i), ft both A1s in (ii) using their outliers provided in [- 25, 28	8]
(f)	1^{st} B1 for a statement about <u>range</u> or <u>IQR</u> saying that 2^{nd} estimates are better		
	Allow range or IQR" has decreased" or "is smaller" o.e.		
	$2^{n\alpha}$ B1 for a statement about <u>medians</u> saying that $2^{n\alpha}$ one is <u>closer to zero</u>	e 1 -	_
	<u>Don't</u> allow "decreased" or "smaller" <u>unless</u> clearly using $ median $ or say e	.g. 3.15	< 5
	change in median <u>or</u> range/IQR. Must clearly state "improved" not just "y	ves"	

Question Number	Scheme	Marks
2. (a)	<i>B</i> and <i>C</i> (only)	B1 (1)
(b)	$P(A \cap C) = 0.6 \times 0.35$ so $[w =] 0.21$	(1) B1cso
(c)	$x = P(C) - w = \underline{0.14}$ y = P(A) - w - P(B) ,= $\underline{0.24}$ z = 1 - P(A \cup C) = 0.26	B1 M1,A1 B1ft
(d)	[x + y =] <u>0.38</u>	(4) B1ft
(e)	$[P(B \cup C) = 0.15 + 0.35] = \underline{0.5}$	B1cao (1)
(f)	$\left[P(A [B \cup C]) \right] = \frac{P(A \cap [B \cup C])}{P(B \cup C)} = \frac{0.15 + 0.21}{"0.5"}$	M1A1ft
	= <u>0.72</u>	A1
		(3) [Total 11]
	Notes	
(a)	B1 for just <i>B</i> and <i>C</i> [NB Just writing $P(B \cap C) = 0$ is B0]	
(b)	B1cso for 0.21 clearly from $P(A) \times P(C)$ or 0.6 × 0.35 and no incorrect statement	nts seen
(c)	1^{st} B1for $x = 0.14$ M1for a correct expression for yA1for $y = 0.24$ 2^{nd} B1ftfor $z = 0.26$ or correct ft of their values to make sum = 1 (provided al These values may be seen in correct regions in the Venn diagram	l probs)
(d)	B1ft for their $x + y$ or 0.38	
(e)	B1 for 0.5 or exact equivalent	
(f)	M1 for a correct ratio of probabilities formula num of: $P(B \cup C \cap A)$ or $P(A)$ with brackets <u>and</u> some correct probability, ft their (e) May be implied by correct 1 st A1ft for a numerator of $0.15 + 0.21$ and a denominator of their (e) Can award M1A1ft for $\frac{0.15 + 0.21}{"\text{their } 0.5"}$ even if their formula is incorrect 2 nd A1 for 0.72 or exact equivalent e.g. $\frac{18}{25}$	$A \cap [B \cup C]$) rect ratio.

Question Number	Scheme	Marks
3. (a)	$\{P(L < 45) = 0.4\} \Rightarrow \frac{45 - \mu}{\sigma} = -0.2533 \text{ or } \Rightarrow 45 - \mu = -0.2533 \sigma \text{ (o.e.)}$	M1
	$45 + 0.2533\sigma = \mu$ (*)	A1cso (2)
(b)	$P(L < 35) = 0.15 \implies \frac{35 - \mu}{\sigma} = -1.0364$	(2) M1
	e.g. $35 + 1.0364\sigma = \mu$	A1 (2)
(c)	Solving: $10 - 0.7831\sigma = 0$ $\sigma = 12.7697$ awrt <u>12.8</u> $\mu = awrt$ <u>48.2</u>	M1 A1 A1 (2)
(d)(i)	$P(L > 35 L < 45) = \frac{P(35 < L < 45)}{P(L < 45)} = \frac{0.25}{0.15 + 0.25} = \frac{5}{\underline{8}} (o.e.)$	(3) A1 M1
(ii)	$P(L < 45 L > 35) = \frac{P(35 < L < 45)}{P(L > 35)} = \frac{0.25}{0.60 + 0.25} = \frac{5}{\underline{17}} \text{ or awrt } 0.294$	A1
(e)	Prob. of a yellow stick from Hei is $\frac{5}{8}$ which is > prob. of $\frac{5}{17}$ for Tang So more likely to be Hei	(3) B1ft dB1ft (2)
	Notos	[Total 12]
	Mark parts (a), (b) and (c) as one part but must see the "show that" for (a) so	omewhere
(a)	M1 for attempting to standardise with 45, μ and σ Allow <u>+</u> and allow $z = awrt 0.25$ A1cso for sight of P($L < 45$) = 0.4 (o.e.) and 0.2533 leading to given ans. [0.2533471 from calc]	
(b)	M1 for standardising with 35 μ and σ and setting equal to a <i>z</i> value with $1 < z < 1.05$ A1 for any correct equation, $z = 1.04$ or better and correct signs	
(c)	M1 for solving their 2 linear equations in μ and σ -reducing to an equation in 1 variable 1 st A1 for σ = awrt 12.8 (NB use of 1.04 gives 12.7113 so we penalise that here) 2 nd A1 for μ = awrt 48.2 [allow 48.3 if 12.8 used in a correct eqn e.g. 35+1.04×12.8 or better]	
(d)	M1 for a correct expression $[num = P(35 < L < 45)]$ with <u>some</u> correct values substituted This M1 may be implied by one of the correct probabilities for (i) or (ii)	
(i)	$1^{st} A1$ for $\frac{5}{8}$ or an exact equivalent e.g. 0.625	
(ii)	2^{nd} A1 for $\frac{5}{17}$ or awrt 0.294	
(e)	1 st B1ft for a correct comparison of their <u>probabilities</u> from (d) "probs" $\notin [0, 1]$ is B0 2 nd dB1ft for choosing Hei (dependent on a suitable reason that it is more likely to be hers) Allow a g "Hei because her prob is greater" to score B1B1 provided (d)(i) > (d)(ii)	
ft	Allow "Tang" if their $(d)(i) <$ their $(d)(i)$ and a correct comparison sta	ated.

Question Number	Scheme	Marks	
4. (a)	[Let P(A) = p]		
	0.4p + 0.7(1 - p) = 0.45	M1A1	
	0.25 = 0.3p	M1	
	$p=\frac{5}{6}$	A1	
	Z B	240	
	55 A 33 A'	Blft	
	1 A' 310 B'	B1	
		(6)	
(b)	$\left[P(A' \mid B')\right] = \frac{\frac{1}{6} \times 0.3}{0.55}$	M1	
	$=\frac{1}{11}$	A1	
		(2)	
	Notes	[10tal 8]	
(a)	1^{st} M1 for $0.4p \text{ or } 0.7(1-p)$ seen in an equation for p		
	1^{st}A1 for a fully correct equation for <i>p</i>		
ALT	1 st M1 for attempt at 2 sim' eq'ns in p and q Allow one error. $0.4p+0.7q = \frac{9}{20}$ and $0.6p+0.3q = \frac{11}{20}$		
	1^{st}A1 for any correct equation in p or q		
	2^{nd} M1 for simplifying their linear equation with at least 2 terms in p or q to a	a = bp or bq	
	2^{104} A1 for P(A) = $\frac{5}{6}$ or exact equiv e.g. 0.83 (may be seen on their tree diagram)		
	1 st B1ft for 1 st 2 branches i.e. $\frac{3}{6}$ and $\frac{1}{6}$ (follow through their P(A))		
	2^{nd} B1 for 2^{nd} 4 branches i.e. $\frac{3}{5}$ and $\frac{3}{10}$		
(b)	M1 for a ratio of probabilities ft their <u>numerator</u> from their tree diagram but de A1 for $\frac{1}{11}$ or exact equivalent e.g. $0.\dot{09}$	enom = 0.55	
SC	[P (<i>A</i>) ≠ $\frac{5}{6}$] award M1A0 for $\frac{P(A') \times \frac{3}{10}}{P(A) \times \frac{3}{5} + P(A') \times \frac{3}{10}}$ ft their P(<i>A</i>) and P(<i>A'</i>) = 1 - 1	P(A)	

Question Number	Scheme	Mark	s
5. (a)	$\left[\overline{x} = \frac{283}{10}\right] = \underline{28.3}$	B1	
	$\sigma_x^2 = \frac{9011}{10} - 28.3^2$	M1	
	= 100.21 accept awrt <u>100</u>	AI	(3)
(b)	$\overline{y} = \underline{30.61}$ (allow 30.6) $\sigma_y^2 = \underline{54.63}$ (allow 54.6)	B1 B1	(2)
(c)	$0.659 = \frac{S_{xy}}{S_{xx}}$ and $S_{xx} = 10\sigma_x^2$ [= 1002.1]	M1M1	(2)
	$S_{xy} = 0.659 \times 1002.1 \{= 660.3839 \ (659 \sim 660.4]\}$	A1	
	$r = \frac{660.3839}{\sqrt{1002.1 \times 546.3}}$	M1	
	= awrt 0.892~0.893	A1	(5)
(d)	Value of r is close to 1 so it <u>does</u> support the use of a linear regression model	B1	
		N/T1	(1)
(e)	$y = 12.0 + 0.059 \times 35 = [35.065]$ Proposed salary is <u>\$35.065</u> (awrt \$35.100)	MI A1	(2)
		[Total]	13]
	Notes		- -
(a)	M1 for a correct expression for variance (no $$) but ft their 28.3 A1 for awrt 100		
(c)	1 st M1 for a correct expression using $b = 0.659$ that connects this value with S ₂ 2 nd M1 for a correct method for S _{xx} (value not required)	$_{xx}$ and S_{xy}	
	1^{st}A1 for a value for S_{xy} in (659, 660.4) or 0.659×1002.1		
	3^{rd} M1 for a correct expression for <i>r</i> (ft their S_{xx} and their S_{xy}) 2^{rd} A1 for awrt 0.892 or 0.893		
(d)	B1 if $0.5 \le r \le 1$ for saying that it <u>does</u> support and giving a suitable con	mment, e.	g.
SC	If $ r < 0.5$ allow it <u>does not</u> support with supporting comment about <i>r</i> close to $r = 1$.	30 ose to 0	
(e)	 M1 for substituting 35 into the given regression equation (may be implied by 35.065) A1 for 35 065 (i.e. a correct value and multiplying by 1000) must be at least 3sf Accept "35 065 thousand dollars" 		
NB	\$ 35 000 is A0 (could have come from the 35 in the question)		

Question Number	Scheme	Marks
6. (a)	[Discrete] uniform (BUT continuous uniform is B0)	B1
(b)	$P(D=3) + P(D=1) \times P(D=2) = \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{5}{\underline{16}} (*)$	(1) M1A1cso
(c)	$[P(D=1) \times P(D=1) = \frac{1}{4} \times \frac{1}{4} \text{ or } 1 - \left(\frac{1}{4} + \frac{5}{16} + \frac{5}{16} + \frac{1}{16}\right) = \frac{1}{16}$	B1 (1)
(d)	$E(X) = 0 + 2 \times \frac{1}{4} + 3 \times \frac{5}{16} + 4 \times \frac{5}{16} + 5 \times \frac{1}{16} = \underline{3}$	(1) M1A1 (2)
(e)	$E(X^2) = 0 + 2^2 \times \frac{1}{4} + 3^2 \times \frac{5}{16} + 4^2 \times \frac{5}{16} + 5^2 \times \frac{1}{16} = [\frac{166}{16} \text{ or } \frac{83}{8} \text{ or } 10.375]$	M1
	$Var(X) = \frac{166}{10} - 3^2$	dM1
	$\sigma_{v}^{2} = 1.375$ or $\frac{11}{2}$	A1
	A 8	(3)
(f)	r 1 2 P(R = r) $\frac{3}{4}$ $\frac{1}{4}$	M1 A1
	y 2.5 4.5	(2)
(g)	$E(R) = 1 \times \frac{3}{4} + 2 \times \frac{1}{4} [= 1.25 \text{ o.e.}] \qquad P(Y = y) \qquad \frac{3}{4} \qquad \frac{1}{4}$	M1
	$E(Y) = 2E(R) + 0.5$ $E(Y) = 2.5 \times \frac{3}{4} + 4.5 \times \frac{1}{4}$	M1
	= 2.5 + 0.5 = 3 (*)	A1cso
(h)	$R = 1$ so $Y = 2.5 \implies X = D = 2$ or 3 or 4 so $D = 3$ or 4 work and prob $= \frac{1}{4} + \frac{1}{4}$ May use $P(X > 2.5 R = 1) = \frac{2}{3}$ then prob will be $\frac{2}{3} \times \frac{3}{4}$	(3) M1
	$R = 2$ so $Y = 4.5 \implies D = 1$ then $X = 0, 3$ or 4 or 5 so $X = 5$ only prob = $\frac{1}{16}$	M1
	So $P(X > Y) = \frac{1}{4} + \frac{1}{4} + \frac{1}{16} = \frac{9}{16}$	A1 (3)
	—	[Total 17]
	Notes	
(b)	M1 for a correct expression in terms of P(<i>D</i>) or with $\frac{1}{4}$ s for P(<i>X</i> = 3) A1cso M1 scored and no incorrect working seen [P(<i>X</i> = 0) + P(<i>X</i> = 3) is M0A0 is	if identified!]
(d)	M1 for an attempt i.e. an expression with at least 3 correct products seen A1 for 3 or an exact equivalent e.g. $\frac{48}{16}$	
(e)	1 st M1 for an attempt i.e. an expression with at least 3 correct products seen[im 2^{nd} dM1 dep on 1 st M1 for use of Var(X) = E(X ²) – E(X) ² must see values but ft A1 for 1.375 or an exact equivalent	The purpose of the probability
(f)	 M1 for one correct value of <i>r</i> and it's associated probability A1 for a fully correct probability distribution – needn't be in a table 	
(g)	1 st M1 for correct expression for $E(R)$ [ft their (f)] or 1.25 or correct distribution 2 nd M1 for correct use of $E(Y) = 2E(R) + 0.5$ or correct expr'n for $E(Y)$ [ft (f)] [A1cso for 3 with no incorrect working seen provided both Ms are scored	n for $Y[\text{ft}(f)]$ $\Rightarrow 1^{\text{st}} M1]$
(h)	1 st M1 for cases where $R = 1$ and prob. 2 nd M1 for cases where $R = 2$ and prob A1 for $\frac{9}{16}$ or exact equivalent	b